Multivariate Data Clustering for the Gaussian Mixture Model

نویسندگان

  • Mindaugas Kavaliauskas
  • Rimantas Rudzkis
چکیده

This paper discusses a soft sample clustering problem for multivariate independent random data satisfying the mixture model of the Gaussian distribution. The theory recommends to estimate the parameters of model by the maximum likelihood method and to use “plug-in” approach for data clustering. Unfortunately, the calculation problem of the maximum likelihood estimate is not completely solved in multivariate case. This work proposes a new constructive a few stage procedure to solve this task. This procedure includes statistical distribution analysis of a large number of the univariate projections of observations, geometric clustering of a multivariate sample and application of EM algorithm. The results of the accuracy analysis of the proposed methods is made by means of Monte-Carlo simulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering student skill set profiles in a unit hypercube using mixtures of multivariate betas

This paper presents a finite mixture of multivariate betas as a new model-based clustering method tailored to applications where the feature space is constrained to the unit hypercube. The mixture component densities are taken to be conditionally independent, univariate unimodal beta densities (from the subclass of reparameterized beta densities given by Bagnato and Punzo, 2013). The EM algorit...

متن کامل

Model-based clustering of Gaussian copulas for mixed data

Clustering task of mixed data is a challenging problem. In a probabilistic framework, the main difficulty is due to a shortage of conventional distributions for such data. In this paper, we propose to achieve the mixed data clustering with a Gaussian copula mixture model, since copulas, and in particular the Gaussian ones, are powerful tools for easily modelling the distribution of multivariate...

متن کامل

Model-based clustering and data transformations for gene expression data

MOTIVATION Clustering is a useful exploratory technique for the analysis of gene expression data. Many different heuristic clustering algorithms have been proposed in this context. Clustering algorithms based on probability models offer a principled alternative to heuristic algorithms. In particular, model-based clustering assumes that the data is generated by a finite mixture of underlying pro...

متن کامل

Face recognition system based on Doubly truncated multivariate Gaussian Mixture Model

A face recognition algorithm based on doubly truncated multivariate Gaussian mixture model with DCT is introduced. The truncation on the feature vector with a significant influence on improving the recognition rate of the system using EM algorithm with K-means or hierarchical clustering is implemented. The characteristic model parameters are estimated. The EM algorithm containing the updated eq...

متن کامل

A Model-Based Distance for Clustering

A Riemannian distance is defined which is appropriate for clustering multivariate data. This distance requires that data is first fitted with a differentiable density model allowing the definition of an appropriate Riemannian metric. A tractable approximation is developed for the case of a Gaussian mixture model and the distance is tested on artificial data, demonstrating an ability to deal wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Informatica, Lith. Acad. Sci.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2005